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SPREADING OF A VISCOUS DROP ON IMPACT

E. L Andriankin

Zhurnal Prikladnoi i Tekhnicheskoi Fiziki, Vol. 7, No. 5, pp. 142~145, 1966

The problem of the inertialess spreading of a drop due to impact
compression was solved by Reynolds on the assumption of constancy
of the coefficient of viscosity and was used in [1] to analyze the
sensitivity of liquid explosives, It is of interest to take into account
inertia forces and the variation of the coefficient of viscosity u with
temperature since the heating of the liquid and the deceleration of
the striker depend on these factors. The outcome of the solution for
steady-state conditions is also discussed.

We will assume that the radius R of the base of the striker is the
same as the initial radius of the thin cylindrical layer of viscous
substance of thickness &;,. The mass of the striker is m and its initial
velocity is V., After simplifications which depend on the smallness
of the ratio /R, the hydrodynamic equations can be written thus:
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we will assume that the liquid does not conduct heat, Then the
dissipated energy in a Lagrangian particle with coordinates ry and z,
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If R/c « 1, (¢ is the velocity of sound in the striker, 7, = 80/ vo is
the characteristic time of impact), the deceleration of the striker can
be written as:
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We solve Eq, (1) by the method of moments, We take u in the
form of a series

w=12(8 — 2) [fs (r, 0} zf; (r, )+ ...]
which satisfies the conditions of adhesion of the liquid at z = 0 and

z = §, Multiplying the equation of motion (1) by 28 (n =0,1,2,...)
and integrating it over the thickness of the layer from 0 to 6 we ob-
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tain a system of differential equations which is equivalent to (1) at
the limit n— «, Integrating the continuity equation with respect to
z and confining ourselves to the zero approximation in Eq, (4) we find
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Using Egs. (2) and (5) and converting from t to §, we establish a
relationship between the moving and Lagrangian coordinates and
determine the temperature distribution
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It follows from (6) that the maximum temperature T+ is attained
at the pointsr =R, z =0, andr =R, 2z = é. Using Egs. (4) andaverag-
ing Eq. (1) over z, we find
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Here T(z, 0, 1) is expressed from () on the condition z = 0 and,
hence, 1 =1, Integration of Eq, (7) for arbitrary variation of the
viscosity with p and T requires numerical calculation even within the
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framework of the assumptions made. However, in special cases the
solution is obtained in quadratures
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Using Eq. (8) we obtain the equation of deceleration of thestriker,
which in dimensionless form for the case y, = (To/T Y, for instance,
is written thus: '
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This equation is easily integrated numerically. If 8~ 0, then
Egs. (9) allows a similarity group and on substitution of the variables
v = 6t8, z=dv/dInk, € =—5(n+ 1)/(2n + 1) reduces to an equation
of the first order. If n =0, i.e., ¢ = const, then Eq, (9)is integrated
in finite form
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It follows from (10) that at large £ we have w, ~ 1/A8* - 9£/148.
Hence, the striker stops when the layer has a finite thickness & = &_.,
Close to & = £ we have w; = 18\, (€, — £)/(1 + ABE-) and,
hence, when & — &,, the value of t, increases as In {1/(£, ~ £)].

At low Reynolds numbers the inertia forces become smaller than
the viscosity forces and relationships (10) give the law of motion of
the striker in the problem of [1]
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It follows from (10) that the velocity of the striker decreases
monotonically with time, However, the radial velocity of flow at the
point z; = 0,58, r =R at instant £, and pressure at point r = 0 for £ =
= §; attain maxima u,(§;) and py(£;), which are determined from the
relationships
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When 8 ~> 0 we find from Eqs. (11) and (13) that &, = al/s®%,

» = a3/;"5 Figure 1 gives the results of calculations of the dimen-
sionless pressure p, = 0,01p;, the temperature 6, = 0,01 6, the time t, =
=0.5t;, and the velocities of the liquid u, = 0,1u, and striker w, in
relation to £ for 8 = 10 and A = 0,01,

In Fig. 2 these quantities at the maximum points are plotted as
functions of 8: ux =uy(&;), P = (£1), 6 = 6(%,) and & = 0.1§,.

The graphs show that the maximum velocity of outward flow is
several times greater than the initial velocity and the maximum pres-
sure (at small B) is even two orders greater, If the energy of elastic

strain of the striker is greater than mv§/2, the compressibility of the
striker must be taken into account, Since the compression time t, in-
creases logarithmically, the characteristic time is of the order of unity.

We can consider the problem of the spread of a drop between two
infinite plates, In this case the variable radius of the drop is expressed
from the law of conservation of mass Rz(t) 6= R(z, 8 and the problem is
solved in the same way as above, However, such a procedure is valid
only in cases where the cumulative splash of the liquid at z = 6/2 can
be neglected.

We will now estimate the correctness of the hypothesis of a quasi-
stationary parabolic velocity profile in the Reynolds problem (8 — 0)
in the case of impact compression, The hypothesis of quasistationarity
is valid if the characteristic time of formation of the viscous velocity
profile T, < 7;. If we consider the dimensions, then 1, ~ py&2/ .
However, the solution of the simplified problem of development of a
viscous flow shows that 7, is an order less, This is important, since the
solution depends exponentially on the time.

We will consider an instant t;, close to the initial instant, but
such that the pressure over the thickness of the layer manages to even
out: 74 > 8gfc. We will assume the velocity of the striker to be con-
stant and we will take the initial distribution of u in the form u(r, z,0) =
= vor/28. which satisfies the continuity equation, In the equations of
motion (1) we neglect the inertial terms, and retain the derivative
0u/dt, The solution of Egs. (17) shows that this is valid everywhere,
except for the layer near the wall, where when t — 0 the velocity
gradients ~ t7%% are of the same order as the acceleration [2]. How-
ever, physical sense demands that t > tp. To get rid of the "movable
boundary™ &(t), we convert to new variables n =z/6and 7 = (§ -

-~ 1)/8y, Then the system of equations, like (1), is written thus:
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We omit the term with & in (14),since it is of the order vdu/dy
of the discarded inertia terms. Performing the Laplace transformarion
we obtain equations for the velocity images u £ U and the pressure
analog ¢ = P,
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Integrating Eq. (15), we obtain
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It is easy to find the asymptotic form of Eq. (16) whens = «
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It follows from (17) that p increases infinitely when t— 0. This
is due to the fact that instantaneous stoppage of the wall layer of
liquid requires infinite friction forces ~t~%® coumerbalanced by
inertial forces and the pressure, which is assumed constant over the
thickness of the layer, The formulas for the originals for t > 0 can be
obtained from Eqs. (18) by expanding U and ¢ in power series and
using the residue theorem [3]. Special points in the plane s lie on
the left of the imaginary axis. At point s =0 there is a pole of the
second order, Simple poles are situated at the points s = —4u)\k2/ oV,
tgoy = Ak (A, =4.493) and, hence,
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It is clear from (18) that the solution rapidly (with characteristic
time T, = 7,/4},) reaches the quasistationary regime.
The author thanks V. K, Bobolev for suggesting the problem and
discussing the results, and also A. S. Kompaneitsand G, T. Afanas’ev
for useful discussion,
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